SAFETY INSTRUCTIONS

Please read and follow these safety guidelines to safeguard yourself and others:

- GSM/GPRS communicator ET082 (later referred to as “the device” or “the communicator”) contains a built-in radio transceiver operating in GSM 850/900/1800/1900 MHz bands.
- DO NOT use the device where it can cause potential danger and interfere with other devices – such as medical devices.
- DO NOT use the device in hazardous environment.
- DO NOT expose the device to high humidity, chemical environment or mechanical impact.
- DO NOT attempt to repair the device yourself – any repairs must be carried out by fully qualified personnel only.

Please, use the 10-24V 300 mA DC power supply unit that meets the EN 60950-1 standard. Any additional device you connect to the device, such as a computer, must also be powered by an EN 60950-1 approved supply. When connecting the power supply to the device, mind the polarity terminals. DO NOT switch the polarity terminals places.

External power supply can be connected to AC mains only inside installation room with automatic 2-pole circuit breaker capable of disconnecting circuit in the event of short circuit or over-current condition. Open circuit breaker must have a gap between connections of more than 3mm (0.12in) and the disconnection current 5A.

Disconnect the mains power before installing. Never install or carry out maintenance during stormy weather. The electric socket that powers the device must be easily accessible.

To switch the device off, unplug the external electric power supply or any other linked equipment that the device is powered from.

A blown fuse cannot be replaced by the user. The replacement fuse has to be of the kind indicated by the manufacturer (fuse F1 model – MINISMDC050F 0.5A).

If you use a computer for the device configuration, it must be earthed.

The WEEE (Waste Electrical and Electronic Equipment) marking on this product (see left) or its documentation indicates that the product must not be disposed of together with household waste. To prevent possible harm to human health and/or the environment, the product must be disposed on in an approved and environmentally safe recycling process. For further information on how to dispose of this product correctly, contact the system supplier, or the local authority responsible for waste disposal in your area.
Technical support

If you experience difficulty during the installation or subsequent use of a "ELDES UAB" system, you may contact "ELDES UAB" distributor or dealer in your country/region.

Warranty procedures

To obtain warranty service, you may return a defective system to your original point of purchase, or the authorized "ELDES UAB" dealer or distributor from whom you purchased the "ELDES" product.

Limited Liability

The buyer agrees that the device will reduce the risk of fire, theft, burglary or other danger but that it does not guarantee against the occurrence of such events. "ELDES UAB" will not take any responsibility for the loss of personal effects, property or revenue whilst using the device. The liability of "ELDES UAB" is limited to the value of the device purchased. "ELDES UAB" is not affiliated with any mobile/wireless/cellular provider and is therefore not responsible for the quality of such services.

Manufacturer Warranty

“ELDES UAB” warrants this system only to the original purchaser and only in case of defective workmanship and materials under normal use of the system for a period of twenty four (24) months from the date of shipment by the “ELDES UAB”. Warranty obligations do not cover expandable materials (components, which require periodic replacement with the operation of system - power elements (batteries), holders and enclosures). The warranty remains valid only if the system is used as intended, following all guidelines outlined in this manual and in accordance with the operating conditions specified. The warranty is void if the system has been exposed to mechanical impact, chemicals, high humidity, fluids, corrosive and hazardous environments or force majeure factors.

Dear Customer,

Thank you for choosing to purchase the GSM/GPRS communicator ET082. Your thoughtful decision will ensure reliable solution for many years as all ELDES products are manufactured to meet the highest standards.

We are confident that you will be completely satisfied with your product. However, in the unlikely event that you do experience a problem, please contact the dealer from whom you made your purchase.

UAB ELDES
www.eldes.lt

Contents of Pack

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ET082</td>
<td>1</td>
</tr>
<tr>
<td>2. User manual</td>
<td>1</td>
</tr>
<tr>
<td>3. GSM/GPRS antenna</td>
<td>1</td>
</tr>
</tbody>
</table>

Not included:
- SIM card - we recommend you get a contract SIM, not Pay As You Go.
- miniUSB cable - can be obtained from your local distributor.

Copyright © “ELDES UAB”. 2015. All rights reserved
1. GENERAL INFORMATION

ET082 is a micro-controller based device intended to replace the third-party PSTN/non-GSM alarm panel communication method via the GSM and IP-based networks.

Examples of using the system:
- Property security.
- Non-GSM/PSTN alarm panel communication replacement by GSM, SMS, GPRS, CSD or Ethernet communication methods.
- Backup connection for PSTN (land line).
- Any electrical appliance control: lighting, watering, heating etc.
- Remote reboot of the “frozen” systems, such as computer network or a server.

Main features
- Configuration by PC and SMS text message.
- Supported communication methods: PSTN, Voice Calls (direct channel or data buffering via GSM audio), SMS, CSD, GPRS network and Ethernet via ELAN3-ALARM device.
- PSTN line state supervision.
- Supported communication protocols: Ademco Contact ID, 4+2, Scancom, EGR100, Kronos, SIA IP.
- Alarm panel wiring via PSTN (RING/TIP terminals) or keybus (serial data) interface.
- 3 inputs customizable as NO (normally-open) or NC (normally-closed) with customizable alarm/restore Contact ID code and text for monitoring station notification and user by SMS text message respectively.
- 3 open-collector outputs for electrical appliance control, non-GSM alarm panel arming/disarming (keyswitch) or alarm/restore event report.
- Manual output control by free of charge phone call and SMS text message.
- Automatic output control in accordance with a specified event.
- Up to 3 users for minor device configuration by SMS text messages, acceptance of input alarm SMS text messages, output control by SMS text message and free of charge phone call.
- Up to 5 users for SMS text message containing Contact ID data converted to user-understandable text acceptance.
- Up to 2 administrators for remote device configuration initiation.
- Event log indicating communication activity in real-time.
- Periodic self-test notification to monitoring station.
- Automatic device restart.

2. TECHNICAL SPECIFICATIONS

2.1. Electrical and Mechanical Characteristics

Supply voltage ... 10-24V max
Peak current ... Up to 700mA
Current used in idle state .. Up to 120mA
GSM modem frequency ... 850/900/1800/1900 MHz
Number of “low” level (negative) digital inputs 3
Allowable input values voltage .. 0... 1.45V; current: 0.8... 0.6mA
Number of outputs ... 3
Output C1 - C3 circuit ... Open collector output. Output is pulled to COM when turned ON.

Maximum commuting output values 3 x 30V; 50mA
Generated phone line values .. Voltage: 48V; current: 25mA; impedance: 270Ω
Dial tone frequency of generated phone line 425 Hz
Dimensions .. 129x78x18mm (5.08x3.07x0.71in)
Operating temperature range -20... +55 °C (-4... +131°F)
Humidity ... 0-90% RH @ 0... +40°C (0-90% RH @ +32... +104°F) (non-condensing)
2.2. Main Unit, LED Indicator and Connector Functionality

Main Unit Functionality

DEF	Pins for restoring default settings
SIM CARD	SIM card slot / holder
GSM MODEM	GSM network 850/900/1800/1900 MHz modem
ANT	GSM antenna SMA type connector
SET - MODE	Pins for Basic mode communication method set up
SERIAL	SERIAL interface pins for ELAN3-ALARM connection
USB	Mini USB port
INFO	Light-emitting diode indicating data transmission/conversion activity
STATUS	Light-emitting diode indicating micro-controller status
GSM	Green light-emitting diode indicating GSM signal strength
JP8 – JP9	Pins for PSTN state supervision set up
F1	0.5A fuse

Connector Functionality

L1 - L4	Terminals for connection to PSTN/PBX
RING – TIP	Terminals for connection to alarm panel's RING/TIP interface
C1 – C3	Open-collector output terminals
DC+	Positive power supply terminal
COM	Common terminal
Z2	Input terminal / DATA terminal for alarm panel connection via keybus interface
Z1	Input terminal / CLOCK terminal for alarm panel connection via keybus interface
Z3	Input terminal

2.3. LED Indicator Functionality

<table>
<thead>
<tr>
<th>INFO indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Idling</td>
</tr>
<tr>
<td>Flashing several times per sec.</td>
<td>Transmitting data to the monitoring station, retrieved from alarm panel</td>
</tr>
<tr>
<td>Steady ON</td>
<td>Converting Contact ID data to user-understandable text</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATUS indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No mains power / micro-controller fault</td>
</tr>
<tr>
<td>Flashing several times per sec.</td>
<td>SIM card not present / PIN code enabled</td>
</tr>
<tr>
<td>Steady ON</td>
<td>Device operating successfully</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSM indication</th>
<th>GSM signal strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No GSM signal</td>
</tr>
<tr>
<td>Flashing every 3 sec.</td>
<td>Poor</td>
</tr>
<tr>
<td>Flashing every 1 sec.</td>
<td>Medium</td>
</tr>
<tr>
<td>Flashing several times per sec.</td>
<td>Good</td>
</tr>
<tr>
<td>Steady ON</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
2.4. Wiring Diagrams

2.4.1. General Wiring

ATTENTION: When connecting ET082 power supply terminals to alarm panel’s auxiliary output (AUX), ensure that the output is able to maintain peak current consumption of up to 700mA. Otherwise, please use an external power supply unit for ET082.

2.4.2. Output Wiring

2.4.3. ELAN3-ALARM

Compatibility: ELAN3-ALARM v0.4 and up + ET082 v01.12.00 and up; hardware version ET082-30 and up.

For more details on ELAN3-ALARM device, please refer to its user manual located at www.eldes.lt/download

Third-party alarm panel’s AUX output or AC/DC power supply unit
3. INSTALLATION

- The device can be installed in a metal or non-flammable cabinet only.
- The device should be installed indoors, in stationary environment ONLY.
- For terminal connection, use 0.50 mm² (0.02in²) thread unshielded cable of up to 100m (328.08ft) length.

1. Disable the PIN code of the SIM card by inserting it into a mobile phone and following the proper menu steps. Ensure that the additional services, such as voice mail, call forwarding, report on missed/busy calls (“call catcher”) are disabled on the SIM card. For more details on how to disable these services, please contact your GSM operator.

2. Once the PIN code is disabled, place the SIM card into the SIM CARD slot of the device.

3. Place the device inside the metal enclosure.

4. Connect the GSM/GPRS antenna. Based on the type of the GSM/GPRS antenna supplied with ET082 device, follow the recommendations for the antenna installation:

 Never install in the following locations:
 - inside the metal cabinet
 - closer than 20 cm (7.87in) from the metal surface and/or power lines

5. Wire up ET082 device power supply and communication terminals to the third-party alarm panel (see 2.3. Wiring Diagrams and 6. COMMUNICATION WIRING METHODS for more details).

6. Power up the device and wait until indicator STATUS lights up.

7. The device starts up in less than a minute. Indicator STATUS should be steady ON indicating successful micro-controller operation.

8. The illuminated or flashing indicator GSM indicates that the device has successfully registered to the GSM network. To find the strongest GSM signal, place the GSM/GPRS antenna and follow the indications provided by GSM indicator (see 2.2. Main Unit, LED Indicator and Connector Functionality for more details).

9. Select and configure the communication mode and method (see 7. COMMUNICATION MODES AND METHODS for more details).

ATTENTION: When connecting ET082 power supply terminals to alarm panel’s auxiliary output (AUX), ensure that the output is able to maintain peak current consumption of up to 700mA. Otherwise, please use an external power supply unit for ET082.

ATTENTION: The device is NOT compatible with pure 3G SIM cards. Only 2G/GSM SIM cards and 3G SIM cards with 2G/GSM profile enabled are supported. For more details, please contact your GSM operator.

NOTE: For maximum device reliability we recommend you do NOT use a Pay As You Go SIM card. Otherwise, in the event of insufficient credit balance on the SIM card, the device would fail to make a phone call or send messages.

NOTE: We advise you to choose the same GSM SIM provider for your device as for your mobile phone. This will ensure the fastest, most reliable SMS text message delivery service and phone call connection.

NOTE: Even though ET082 installation process is not too complicated, we still recommend to perform it by a person with basic knowledge in electrical engineering and electronics to avoid any device damage.
4. GENERAL OPERATIONAL DESCRIPTION

ET082 communicator is used with third-party PSTN/non-GSM alarm panels as a communication gateway via GSM and IP-based networks for data transmission from the alarm panel to monitoring station and/or listed user phone number by SMS text message.

The device comes equipped with PSTN line state supervision feature that in case of PSTN line loss would result in switching to a pre-configured communication method, such as GSM, SMS, GPRS, until the PSTN line is restored followed by notifying the monitoring station and/or listed user phone number by SMS text message. The device can detect a physical PSTN line cut-off or even when a dial tone is still present due to temporary service suspension by the service provider for technical or billing reasons (requires Smart PSTN module). The device has 3 digital inputs (normally closed or normally open) for alarm device's PGM output or detection device connection, such as magnetic door contact. By connecting the input to a non-GSM alarm panel’s PGM output, up to 3 listed user phone numbers will be able to receive an SMS text message as well as to notify the monitoring station regarding arming/disarming and other events depending on the alarm panel configuration.

The device comes equipped with 3 open-collector outputs allowing up to 3 listed user phone numbers to turn ON or OFF the electrical appliances, such as heating, lighting, lift the gates, blinds by free of charge phone call or SMS text message. Alternatively, the outputs can be controlled automatically based on the associated ET082 input alarm/restore event. The outputs can also be used for PSTN or GSM connection loss indication as well as for arming/disarming by connecting an output to one of the alarm panel’s zones pre-configured as a keyswitch.

The device will ignore SMS requests and phone calls coming from non-listed phone numbers.
5. CONFIGURATION METHODS

5.1. SMS Text Messages

In this user manual the underscore character "_" represents one space character. Every underscore character must be replaced by a single space character. There must be no spaces or other unnecessary characters at the beginning and at the end of the SMS text message.

In order to configure and control the device by SMS text message, send the text command to the ET082 device phone number from one of the listed administrator phone numbers. The structure of SMS text message consists of 4-digit SMS password (the default SMS password is 0000 - four zeros), the parameter and value. For some parameters the value does not apply e.g. STATUS. The variables are indicated in lower-case letters, while a valid parameter value range is indicated in brackets.

5.2. ELDES Configuration Tool Software

ELDES Configuration Tool software is intended for ET082 alarm system configuration locally via USB port or remotely via GPRS network or Ethernet connection (ELAN3-ALARM device required). This software simplifies system configuration process by allowing to use a personal computer in the process. Before starting to use ELDES Configuration Tool software, please read the user guide provided in the software's HELP section.

5.2.1. Administrator Phone Numbers

The device supports 2 administrator phone numbers identified as Admin 1 and Admin 2. When the phone number is set, the administrator will be able to initiate remote configuration session by SMS text message.

The supported phone number format is the following:

- **International (with plus)** - The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +44170911XXXX1.
- **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
- **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.

Set administrator phone number

This operation may be carried out from the PC using the ELDES Configuration Tool software.

NOTE: The administrator phone numbers are used for remote configuration session initiation ONLY. Admin 1/Admin 2 phone numbers CANNOT be used for output control or input alarm/restore SMS text message acceptance.

5.2.2. Remote Connection

ATTENTION: The system will NOT transmit any data to monitoring station while configuring the system remotely via GPRS network or Ethernet connection. However, during the remote connection session, the data messages are queued up and transmitted to the monitoring station after the configuration session is over.

ELDES Configuration Tool software provides remote system configuration ability via Internet using one of the following methods:

- **ELDES proxy server** (recommended). The connection can be established on the system via GPRS network or Ethernet using ELAN3-ALARM communicator.
- **Running TCP/IP server on ELDES Configuration Tool** (advanced). The connection can be established on the system via GPRS network or Ethernet using ELAN3-ALARM communicator.
- **Direct connection via Ethernet using ELAN3-ALARM communicator**.

In order to start using the remote configuration feature, please run the step-by-step wizard and follow the steps provided in the start page of ELDES Configuration Tool software. Please, note that based on the selected method, it might be necessary to send an SMS text message to the system's phone number in order to initiate the remote connection. By following the steps you will be instructed on what text must be sent to the system's phone number in such case.
5.2.3. **Ending the Configuration Process**

After the system configuration is complete, use one of the following methods to end the configuration process:

- Click **Disconnect** or **Stop** button and close *ELDES Configuration Tool* software;
- The session will automatically expire in 20 minutes. Before the last 5 minutes, the software will offer the user to extend the session for another 20 minutes.
- Alternatively, the connection with the server can be terminated at any time by sending an SMS text message.

Terminate the connection

<table>
<thead>
<tr>
<th>SMS text message content:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssss_ENDCONFIG</td>
</tr>
<tr>
<td>Value: ssss - 4-digit aSMS password.</td>
</tr>
<tr>
<td>Example: 1111_ENDCONFIG</td>
</tr>
</tbody>
</table>

Once the session is expired or terminated, the system will reply with an SMS text message confirming the end of the session.
6. COMMUNICATION WIRING METHODS

ET082 communicator supports one of the following communication wiring methods:

- **RING/TIP interface** - The alarm panel is linked up with ET082 communicator via the RING and TIP terminals simulating the connectivity of the PSTN line. For more details, please refer to 6.1. RING/TIP Interface
- **Keybus interface** - The alarm panel is linked up with ET082 communicator via the keybus (serial data) interface just like the alarm panel accessory, such as keypad. For more details, please refer to 6.2. Keybus Interface

ATTENTION: Only one of the aforementioned methods is supported at a time.

6.1. RING/TIP Interface

Using this communication wiring method, the communicator simulates the PSTN line presence for the alarm panel. Depending on the PSTN line accessibility in the installation area and user requirements, the communicator can be wired to the alarm panel using one of the following diagrams:

- **No PSTN line** - The communication link between the alarm panel and the monitoring station is established using ET082 device in the middle. The communicator retrieves data from the alarm panel and transmits it to the monitoring station via the pre-configured communication method. PSTN line is completely excluded from the communication process.

1. Connect the communicator's RING and TIP terminals to the alarm panel's RING and TIP terminals respectively.

- **With PSTN Line Supervision** - The communication link between the alarm panel and the monitoring station is established directly via PSTN line adding PSTN state (terminals L3 and L4) supervision provided by ET082 communicator. The communicator is not involved in the communication process while PSTN connectivity is available. In case of PSTN loss (terminals L3 and L4), the communicator will take over the communication link and continue data transmission via the pre-configured communication method as described in No PSTN Line until PSTN connectivity is restored.
1. Connect the communicator's RING and TIP terminals to the alarm panel's RING and TIP terminals respectively.
2. Connect L3 and L4 terminals to the PSTN socket.

With External PSTN Line Supervision - The communication link between the alarm panel and the monitoring station is established directly via PSTN line connected via PBX (private branch exchange) adding external PSTN state (terminals L1 and L2) supervision provided by ET082 communicator. The communicator is not involved in the communication process while PSTN connectivity is available. In case of external PSTN loss (terminals L1 and L2), the communicator will take over the communication link and continue data transmission via the pre-configured communication method as described in **No PSTN Line** until PSTN connectivity is restored. In case of internal PSTN loss (terminals L3 and L4), the PSTN connectivity would remain present.

For more details on how the PSTN loss is detected and managed by the communicator, please refer to **15. PSTN CONNECTION STATE SUPERVISION**.

With PSTN line supervision when Advanced communication enabled and Smart PSTN module is installed

The communication link between the alarm panel and the monitoring station could be established via all available communication channels. PSTN line could be configured as Primary, Backup1 or Backup2 method. The communicator is involved in the communication process while PSTN connectivity is available. In case of PSTN loss (connect PSTN line to terminals L3 and L4, and set the jumpers on the communicator's JP8 and JP9 pins), the communicator will take over the communication link and continue data transmission via next pre-configured communication method until PSTN connectivity is restored.
6.2. Keybus Interface

ATTENTION: This communication wiring method is supported by hardware version ET082-30 and up.

NOTE: When using this communication wiring method, PSTN connectivity is supported ONLY if Advanced communication is enabled AND Smart PSTN module is installed.

Using this communication wiring method Z1 and Z2 terminals convert to keybus interface for alarm panel connection. In such case Z1 and Z2 terminals cannot be used as digital inputs.

The communicator retrieves serial data from the alarm panel and transmits it to the monitoring station via the pre-configured communication method.

1. Connect the communicator's Z2 and Z1 terminals to the alarm panel's GRN and YEL terminals respectively.
2. If the communicator is powered from the external power supply unit, connect the communicator's COM terminal to alarm panel's BLK (on some alarm panel models GND) terminal.
3. Select the alarm panel model from the list of the supported third-party alarm panels supported by the communicator:
 - Paradox SP*
 - Paradox EVO192*
 - DSC 1616/1832/1864
 - DSC PC585
4. Set up the Account number, which reflects individual alarm panel's partition on the communicator.

To manage the aforementioned parameters, please refer to the following configuration parameter.

```
1. Connect the communicator's Z2 and Z1 terminals to the alarm panel's GRN and YEL terminals respectively.
2. If the communicator is powered from the external power supply unit, connect the communicator's COM terminal to alarm panel's BLK (on some alarm panel models GND) terminal.
3. Select the alarm panel model from the list of the supported third-party alarm panels supported by the communicator:
   - Paradox SP*
   - Paradox EVO192*
   - DSC 1616/1832/1864
   - DSC PC585
4. Set up the Account number, which reflects individual alarm panel's partition on the communicator.
```

To manage the aforementioned parameters, please refer to the following configuration parameter.

```
Select third-party alarm panel model
```

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

* Supported by device s/n: 0006572 and up.
7. COMMUNICATION MODES AND METHODS

ET082 communicator supports Basic and Advanced modes and methods providing a variety of communication protocols. Please, note that some protocols and communication methods are not supported in Basic mode and vice versa.

Basic mode - The communication methods supported by Basic Mode can be set as primary connection only. Backup connections are NOT available in this mode.

Advanced mode - The communication methods supported by Advanced Mode can be set as primary or backup connection. The user can set up to 2 backup connections in any sequence order.

<table>
<thead>
<tr>
<th>Basic mode*</th>
<th>Advanced mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Protocol</td>
</tr>
<tr>
<td>Voice Calls (direct channel via GSM audio)</td>
<td>Ademco Contact ID, 4+2</td>
</tr>
<tr>
<td>SMS – up to 5 user phone numbers***</td>
<td>Ademco Contact ID (converted to user-understandable text)</td>
</tr>
<tr>
<td>IP (GPRS/Ethernet via ELAN3-ALARM) - 1 destination IP address</td>
<td>EGR100, Kronos, SIA IP</td>
</tr>
<tr>
<td>Voice Calls (direct channel via GSM audio) + SMS – up to 5 user phone number</td>
<td>Ademco Contact ID (by SMS: converted to user-understandable text)</td>
</tr>
</tbody>
</table>

* Supported only when ET082 is linked up with the alarm panel via RING/TIP interface (see 6.1. RING/TIP INTERFACE). Does NOT support notifications to the listed user by SMS text message and data report to the monitoring station regarding PSTN line loss/restore events (see 14. PSTN CONNECTION STATE SUPERVISION).

** Supported only when ET082 is linked up with the alarm panel via RING/TIP interface (see 6.1. RING/TIP INTERFACE).

*** Can be used simultaneously with any communication method of Advanced mode (see 7.2.2. SMS).

**** When Smart PSTN module implemented, PSTN method is available for Primary and Backup communication. When Smart PSTN module is not implemented, PSTN method is available for Primary communication ONLY.

** NOTE** When using Advanced Mode, PSTN connection method is available ONLY if you have ET082 firmware version v01.16.00 and up.
7.1. Basic Mode

The communication method of Basic mode is selected by jumper position on the SET/MODE pins on board. Basic mode features the following communication methods:

- Voice Calls
- SMS
- Voice Calls + SMS
- IP

ATTENTION: Basic mode is supported only when ET082 is linked up with the alarm panel via RING/TIP interface.

NOTE: The jumper position on SET/MODE pins becomes ineffective as soon as Advanced mode is enabled.

7.1.1. Voice Calls Method

Using this method the communicator retrieves Ademco Contact ID or 4+2 data from the alarm panel and transmits it to the monitoring station via GSM audio direct channel without influencing the data itself. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel: Enable Ademco Contact ID or Ademco 4+2 mode.
2. On alarm panel: Set valid Account number.
3. On alarm panel: Set the monitoring station phone number (-s) in one of the following formats:
 - **International (with 00)** – The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** – The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
4. On ET082: Ensure that NO jumpers are set on SET/MODE pins on board.

5. If required to override the Account number set on the alarm panel, please use Voice Calls communication method provided by Advanced mode (see 7.2.1. Voice Calls Method). In addition, please refer to 10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT.

ATTENTION: In the event of failure using this communication method, please refer to 8. GSM MODEM SETTINGS or use Voice Calls communication method provided by Advanced mode (see 7.2.1. Voice Calls Method).

7.1.2. SMS Method

Using this method the communicator retrieves Ademco Contact ID data from the alarm panel, converts it to user-understandable text and delivers to up to 5 listed users by SMS text message. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel: Enable Ademco Contact ID mode.
2. On alarm panel: Set random Account number.
3. On alarm panel: Set random monitoring station phone number; single digit is sufficient.
4. On ET082: Set a jumper on **MODE** pins on board.
5. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.

6. On ET082: Open **Messaging Settings** section and proceed as follows:
 a. Set up to 5 user phone numbers that will be permitted to receive the data converted to user-understandable text by SMS text message. The supported phone number formats are the following:
 - **International (with plus)** - The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +44170911XXXX1.
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
 b. Manage SMS text message content reflecting the Ademco Contact ID data message structure.
 c. Based on the alarm panel’s documentation, ensure that all CID event codes supported by the alarm panel are added under the **Messaging Settings** section.

For more details on the parameters located under **Messaging Settings** section, please refer to ELDES Configuration Tool software's HELP file.

7.1.3. Voice Calls+SMS Method

Using this method the communicator retrieves Ademco Contact ID data from the alarm panel, transmits to the monitoring station via GSM audio direct channel without influencing the data itself followed by data conversion to user-understandable text and delivery to up to 5 listed users by SMS text message. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel: Enable Ademco Contact ID mode.
2. On alarm panel: Set valid Account number.
3. On alarm panel: Set the monitoring station phone number (-s) in one of the following formats:
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
4. On ET082: Set a jumper on **SET** pins on board.

5. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.

6. On ET082: Open **Messaging Settings** section and proceed as follows:
 a) Set up to 5 user phone numbers that will be permitted to receive the data converted to user-understandable text by SMS text message. The supported phone number formats are the following:
 - **International (with plus)** - The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +44170911XXXX1.
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
b) Manage SMS text message content reflecting the Ademco Contact ID data message structure.

c) Based on the alarm panel's documentation, ensure that all CID event codes supported by the alarm panel are added under the **Messaging Settings** section, otherwise the communicator will be unable to deliver a certain event.

7. If required to override the Account number set on the alarm panel, please use Voice Calls communication method provided by Advanced mode (see **7.2.1. Voice Calls Method**). In addition, please refer to **10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT**.

For more details on the parameters located under **Messaging Settings** section, please refer to **ELDES Configuration Tool** software's HELP file.

ATTENTION: In the event of failure using this communication method, please refer to **8. GSM MODEM SETTINGS** or use Voice Calls communication method provided by Advanced mode (see **7.2.1. Voice Calls Method**).

7.1.4. IP Method

Using this method the communicator retrieves Ademco Contact ID data from the alarm panel, converts it to EGR100, Kronos or SIA IP protocol and transmits it to the monitoring station via GPRS network or Ethernet connection using ELAN3-ALARM device. Before proceeding with any further configuration, please complete the steps provided in **6.1. RING/TIP Interface**.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel: Enable Ademco Contact ID mode.
2. On alarm panel: Set random Account number.
3. On alarm panel: Set random monitoring station phone number; single digit is sufficient.
4. On ET082: Set the jumpers on **SET** and **MODE** pins on board.

5. On ET082: Connect the device to the computer via USB cable and run **ELDES Configuration Tool** software.

6. On ET082: Open **IP / CSD Settings → IP Settings → IP 1** section and set the following parameters:

 - **Server IP** – Public IP address of the machine running EGR100/Kronos/SIA IP-based software.
 - **Port** – Forwarded TCP/UDP port number of the machine running EGR100/Kronos/SIA IP-based software. Kronos and SIA IP-based software require communicates via TCP port, while EGR100 supports both – TCP and UDP. UDP is highly recommended for EGR100 in order to reduce the data traffic consumption.
 - **Protocol** – Format of the data message transmitted from ET082 to the monitoring station's IP address. Available protocols:
 - **EGR100** – ESR100 digital receiver and EGR100 middleware data format.
 - **Kronos** – Kronos LT/Kronos NET monitoring station software data format.
 - **SIA IP** – SIA/IP data format complying with ANSI/SIA DC-09-2007 standard.

7. On ET082: If EGR100 is selected, it is MANDATORY to change the default **Unit ID** number, which is 0000, to any other 4-digit number.

8. On ET082: Select one of the following ways of data transmission:

 - **GPRS network** – GPRS connection using the SIM card with active mobile internet (data) service.
 - **ELAN3-ALARM** – Ethernet (LAN) connection using ELAN3-ALARM device.

9. On ET082: If GPRS network is selected, please set the following parameters:

 - **APN** – Access-point-name provided by GSM operator.
 - **User Name** – User name provided by GSM operator.
 - **Password** – Password provided by GSM operator.

10. On ET082: If a ping signal is required in order to periodically verify the online status of the device, set the **Test Period**. For SIA IP protocol, please enable **Contact ID Ping** parameter and change the CID event code (by default - 602) if required.

11. On ET082: Open **Events Log** section to monitor the activity.

12. On ET082: If required, the Account number set on the alarm panel can be overridden under **System → Security Panel Settings** section. For more details, please refer **10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT**.
For more details on the parameters located under **IP / CSD Settings** → **IP Settings** section, please refer to *ELDES Configuration Tool* software’s HELP file.

For detailed step-by-step instructions on how to establish the communication between ET082 communicator and EGR100 middleware, please refer to the middleware’s HELP file.

7.2. Advanced Mode

The communication method of Advanced mode is selected using *ELDES Configuration Tool* software. Advanced mode features the following communication methods:

- Voice Calls
- SMS
- IP
- CSD
- PSTN*

Advanced mode supports 1 primary and up to 2 backup connections. All of the mentioned communication methods can be set up as primary or backup connection in any sequence order.

Initially, the device communicates via primary connection with the monitoring station. By default, if the initial attempt to transmit data is unsuccessful, the device will make additional attempts until the data is successfully delivered. If all attempts are unsuccessful, the device will follow this pattern:

a) The device switches to the backup connection that follows in the sequence (presumably - Backup 1).

b) The device then attempts to transmit data by the backup connection.

c) If the initial attempt is unsuccessful, the device will make additional attempts until the data is successfully delivered.

d) If the device ends up with all unsuccessful attempts, it will switch to the next backup connection in the sequence (presumably - Backup 2) and will continue to operate as described in the previous steps. The connection is considered unsuccessful under the following conditions:

- **IP** - The device has not received the ACK data message from the monitoring station within 40 seconds.
- **Voice calls:**
 - The device has not received the "handshake" signal from the monitoring station within 40 seconds.
 - The device has not received the "kissoff" signal from the monitoring station within 5 attempts each lasting 1 second.
- **CSD** - The device has not received the ACK data message from the monitoring station within 35 seconds.
- **SMS** - The device has not received the SMS delivery report from the SMSC (Short Message Service Center) within 45 seconds.

e) If one of the attempts is successful, the device will transmit all queued up data messages by this connection.

f) The device then returns to the primary connection and attempts to transmit the next data messages by primary connection.

g) If the device ends up with all unsuccessful attempts by all connections, it will return to the primary connection.

* When Smart PSTN module implemented, PSTN method is available for Primary and Backup communication. When Smart PSTN module is not implemented, PSTN method is available for Primary communication ONLY.

NOTE: Once enabled, Advanced mode overrides the jumper position on **SET/MODE** PCB pins.

7.2.1. Voice Calls Method

Based on the communication wiring method that is being used, using this method the communicator:

- **RING/TIP interface** - Retrieves Ademco Contact ID or Scancom data from the alarm panel, saves it to the memory buffer (the data may be stored for up to 10 seconds) and transmits it to the monitoring station via GSM audio channel. Before proceeding with any further configuration, please complete the steps provided in **6.1. RING/TIP Interface**.

- **Keybus interface** - Retrieves serial data from the alarm panel, converts it to Ademco Contact ID data followed by transmission to the monitoring station via GSM audio channel. Before proceeding with any further configuration, please complete the steps provided in **6.2. Keybus Interface**.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel*: Enable Ademco Contact ID or Scancom mode.
2. On alarm panel*: Set valid Account number.
3. On alarm panel*: Set the monitoring station phone number (-s) in one of the following formats:
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for *UK*: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for *UK*: 0170911XXXX1.
4. On ET082: Connect the device to the computer via USB cable and run *ELDES Configuration Tool* software.
5. On ET082**: Open System → Security Panel Settings and set the monitoring station phone number.

6. On ET082: Open System → Settings section and proceed as follows:
 a) Enable Advanced Mode.
 b) Set Voice Calls as Primary connection. In addition, Backup 1 and Backup 2 connections can be set under this section.

7. On ET082: Open Voice Calls Settings section and select protocol:
 - Contact ID - Ademco Contact ID data format.
 - Scancom*** - Data format complying with Scancom/BSIA Fast Format protocol requirements.

8. On ET082: Open Events Log section to monitor the activity.

9. On ET082****: If required, the Account number set on the alarm panel can be overridden under System → Security Panel Settings section. For more details, please refer 9. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT.

* Necessary only when using RING/TIP interface communication wiring method.
** Necessary only when using Keybus interface communication wiring method. When using RING/TIP interface communicates wiring method, it might be useful to replace the monitoring station phone number retrieved from the alarm panel.
*** Supported only when using RING/TIP interface communication wiring method.
**** Useful only when using RING/TIP interface communication wiring method.

For more details on the parameters located under Voice Calls Settings section, please refer to ELDES Configuration Tool software's HELP file.

7.2.2. SMS Method

Based on the communication wiring method that is being used, using this method the communicator:

- **RING/TIP Interface** - Retrieves Ademco Contact ID data from the alarm panel, converts it to user-understandable text and delivers to up to 5 listed users by SMS text message. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

- **Keybus Interface** - Retrieves serial data from the alarm panel, converts it Ademco Contact ID data followed by conversion to user-understandable text and delivery to up to 5 listed users by SMS text message. Before proceeding with any further configuration, please complete the steps provided in 6.2. Keybus interface.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel*: Enable Ademco Contact ID mode.

2. On alarm panel*: Set random Account number.

3. On alarm panel*: Set random monitoring station phone number; single digit is sufficient.

4. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.

5. On ET082: Open System → Settings section and proceed as follows:
 a. Enable Advanced Mode.
 b. Set SMS as Primary connection. In addition, Backup 1 and Backup 2 connections can be set under this section.

6. On ET082: Open Messaging Settings section and proceed as follows:
 a. Set up to 5 user phone numbers that will be permitted to receive the data converted to user-understandable text by SMS text message. The supported phone number formats are the following:
 - **International (with plus)** - The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +44170911XXXX1.
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
 b. Manage SMS text message content reflecting the Ademco Contact ID data message structure.
 c. Based on the alarm panel's documentation, ensure that all CID event codes supported by the alarm panel are added under the Messaging Settings section, otherwise the communicator will be unable to deliver a certain event.

7. On ET082: Open Events Log section to monitor the activity.

* Necessary only when using RING/TIP interface communication wiring method.

For more details on the parameters located under Messaging Settings section, please refer to ELDES Configuration Tool software's HELP file.
7.2.3. IP Method

Based on the communication wiring method that is being used, using this method the communicator:

- **RING/TIP Interface** – Retrieves Ademco Contact ID data from the alarm panel, converts it to EGR100, Kronos or SIA IP protocol and transmits to the monitoring station via GPRS network or Ethernet connection using ELAN3-ALARM device. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

- **Keybus interface** – Retrieves serial data from the alarm panel, converts it to Ademco Contact ID followed by data conversion to EGR100, Kronos or SIA IP protocol and transmission to the monitoring station via GPRS network or Ethernet connection using ELAN3-ALARM device. Before proceeding with any further configuration, please complete the steps provided in 6.2. Keybus interface.

To set the communicator to transmit data using this communication method, please proceed as follows:

1. On alarm panel*: Enable Ademco Contact ID mode.
2. On alarm panel*: Set random Account number.
3. On alarm panel*: Set random monitoring station phone number; single digit is sufficient.
4. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.
5. On ET082: Open **System** → **Settings** section and proceed as follows:
 a. Enable **Advanced Mode**.
 b. Set IP1, IP2 or IP3 as **Primary** connection. In addition, **Backup 1** and **Backup 2** connections can be set under this section.
3. On ET082: Based on the configuration set up in step #5-b), open **IP / CSD Settings** → **IP Settings** → **IP1/2/3** section and set the following parameters:
 - **Server IP** - Public IP address of the machine running EGR100/Kronos/SIA IP-based software.
 - **Port** - Forwarded TCP/UDP port number of the machine running EGR100/Kronos/SIA IP-based software. Kronos and SIA IP-based software require communicates via TCP port, while EGR100 supports both - TCP and UDP. UDP is highly recommended for EGR100 in order to reduce the data traffic consumption.
 - **Protocol** - Format of the data message transmitted from ET082 to the monitoring station's IP address. Available protocols:
 - **EGR100** – ESR100 digital receiver and EGR100 middleware data format.
 - **Kronos** – Kronos LT/Kronos NET monitoring station software data format.
 - **SIA IP** – SIA/IP data format complying with ANSI/SIA DC-09-2007 standard.
4. On ET082: If EGR100 is selected, it is MANDATORY to change the default **Unit ID** number, which is 0000, to any other 4-digit number.
5. On ET082: Select one of the following ways of data transmission:
 - **GPRS network** – GPRS connection using the SIM card with active mobile internet (data) service.
 - **ELAN3-ALARM** - Ethernet (LAN) connection using ELAN3-ALARM device.
6. On ET082: If GPRS network is selected, please set the following parameters:
 - **APN** – Access-point-name provided by GSM operator.
 - **User Name** – User name provided by GSM operator.
 - **Password** - Password provided by GSM operator.
7. On ET082: If a ping signal is required in order to periodically verify the online status of the device, set the **Test Period**. For SIA IP protocol, please enable **Contact ID Ping** parameter and change the CID event code (by default - 602) if required.
8. On ET082: Open **Events Log** section to monitor the activity.
9. On ET082**: If required, the Account number set on the alarm panel can be overridden under **System** → **Security Panel Settings** section. For more details, please refer to 10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT

* Necessary only when using RING/TIP interface communication wiring method.
** Useful only when using RING/TIP interface communication wiring method.

For more details on the parameters located under **IP / CSD Settings** → **IP Settings** section, please refer to ELDES Configuration Tool software's HELP file.

For detailed step-by-step instructions on how to establish the communication between ET082 communicator and EGR100 middleware, please refer to the middleware's HELP file.
7.2.4. CSD Method
Based on the communication wiring method that is being used, using this method the communicator:

- **RING/TIP interface** - Retrieves Ademco Contact ID data from the alarm panel, converts it to CSD data protocol and transmits to the monitoring station via CSD connection. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

- **Keybus interface** - Retrieves serial data from the alarm panel, converts it to Ademco Contact ID followed by transmission to the monitoring station via CSD connection. Before proceeding with any further configuration, please complete the steps provided in 6.2. Keybus interface.

To set the communicator to transmit data using this communication method, please proceed as follows:
1. On alarm panel*: Enable Ademco Contact ID mode.
2. On alarm panel*: Set valid Account number.
3. On alarm panel*: Set random monitoring station phone number; single digit is sufficient.
4. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.
5. On ET082: Open **System → Settings** section and proceed as follows:
 a. Enable Advanced Mode.
 b. Set CSD as Primary connection. In addition, Backup 1 and Backup 2 connections can be set under this section.
6. On ET082: Open **IP / CSD Settings → CSD Settings** section and set the following parameters and set up to 3 monitoring station phone numbers. The supported phone number format is the following:
 - **International (with plus)** - The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +44170911XXXX1.
7. On ET082: Open **Events Log** section to monitor the activity.
8. On ET082**: If required, the Account number set on the alarm panel can be overridden under System → Security Panel Settings section. For more details, please refer to 10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT.
 * Necessary only when using RING/TIP interface communication wiring method.
 ** Useful only when using RING/TIP interface communication wiring method.

For more details on the parameters located under **IP / CSD Settings → CSD Settings** section, please refer to ELDES Configuration Tool software's HELP file.

7.2.5. PSTN Method
Based on the communication wiring method that is being used, using this method the communicator:

- **RING/TIP interface** - Retrieves Ademco Contact ID or Scancom data from the alarm panel, saves it to the memory buffer (the data may be stored for up to 10 seconds) and transmits it to the monitoring station via GSM audio channel. Before proceeding with any further configuration, please complete the steps provided in 6.1. RING/TIP Interface.

- **Keybus interface** - Retrieves serial data from the alarm panel, converts it to Ademco Contact ID data followed by transmission to the monitoring station via GSM audio channel. Before proceeding with any further configuration, please complete the steps provided in 6.2. Keybus interface.

To set the communicator to transmit data using this communication method, please proceed as follows:
1. On alarm panel*: Enable Ademco Contact ID or Scancom mode.
2. On alarm panel*: Set valid Account number.
3. On alarm panel*: Set the monitoring station phone number (-s) in one of the following formats:
 - **International (with 00)** - The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 0044170911XXXX1.
 - **Local** - The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 0170911XXXX1.
4. On ET082: Connect the device to the computer via USB cable and run ELDES Configuration Tool software.
5. On ET082: Open **System → Security Panel Settings** and set the monitoring station phone number.
6. On ET082: Open **System → Settings** section and proceed as follows:
 a) Enable Advanced Mode.
 b) Set PSTN as Primary connection. In addition, Backup 1 and Backup 2 connections can be set under this section (you may choose PSTN method as well).
 * Necessary only when using RING/TIP interface communication wiring method.

NOTE When Smart PSTN module implemented, PSTN method is available for Primary and Backup communication. When Smart PSTN module is not implemented, PSTN method is available for Primary communication ONLY.

ATTENTION: Direct channel via PSTN feature can be enabled by assigning PSTN to Primary notification channel.
8. GSM MODEM SETTINGS

Voice Calls communication method might partly or completely fail with some alarm panel models due to the audio level differences. In the event of failure or corrupted data delivery to the monitoring station, it is recommended to configure the Microphone Gain and Speaker Level parameters. Recommendations:

- **“Handshake” signal error** – In the event of error it is recommended to gradually increase Speaker Level parameter by value of 20-25 and repeat the data transmission. If the error persists when testing with the maximum parameter value of 100, try decreasing the value by value of 10-15 until a successful “Handshake” signal is achieved.

- **“Kissoff” signal error** – In the event of error it is recommended to gradually increase Microphone Gain parameter by value of 2-3 and repeat the data transmission. If the error persists when testing with the maximum parameter value of 15, try decreasing the value by value of 1-2 until a successful “Kissoff” signal is achieved.

To manage Microphone Gain and Speaker Level parameters, please refer to the following configuration methods.

9. SMS FORWARD

ET082 comes up with a feature, called SMS forward. The system allows user to forward any received message from devices' SIM card to the user's listed mobile phone number (see 12. USER PHONE NUMBERS). Using ELDES Configuration Tool software, open System Parameters section, where you'll be able to configure and choose further options. There are 4 basic SMS forwarding options:

- **Forward All received SMS** - if this option is enabled, then every single message, coming to devices' SIM card, will be forwarded to the user's listed phone number.

- **Forward All received SMS from unknown users** - allows user to receive only those messages, coming from unlisted phone numbers.

- **Forward All received SMS from registered users with wrong syntax or wrong password** - user will receive only those messages from listed phone numbers, containing "wrong syntax" or "wrong password" notification.

- **Forward All received SMS from specified Phone Number** - allows you to enter one specified phone number and exploit every single message that comes from it to your devices' SIM card.

By default, SMS forward feature is disabled. To enable/disable this feature, please refer to the following configuration method.

ATTENTION: If a single forwarded SMS message size exceeds 160 characters, it won't be transmitted properly.

ATTENTION: User is able to add the only listed phone number (if one is enough) as a specified phone number (by enabling the option Forward All received SMS from specified Phone Number), but none of SMS messages will be forwarded to himself in any case!

10. MONITORING STATION PHONE NUMBER AND ACCOUNT REPLACEMENT

The communicator comes equipped with monitoring station phone number and Account number replacement features useful for RING/TIP communication wiring method.

When using Voice Calls communication method of Advanced mode, the user can override the monitoring station phone number existing on the alarm panel by setting it on the communicator. This feature allows to re-direct data transmission to a different monitoring station phone number.

In addition, the user is allowed to override up to four Account numbers, reflecting up to four alarm panel's partitions each, by providing the Account numbers existing on the alarm panel and the new ones.

Typically, monitoring station phone number and Account replacement is used with the alarm panels that have been locked by the previous security service provider/installer.

To manage monitoring station phone number and Account replacement, please refer to the following configuration method.
11. SMS PASSWORD

For security reasons, the device uses the following type of password:

SMS password – 4-digit password used for device configuration and output control from up to 3 user phone numbers by SMS text messages, remote configuration initiation from up to 2 administrator phone numbers and logging in to ELDES Configuration Tool software. By default, SMS password is **0000**, which is RECOMMENDED to change.

Set SMS password

<table>
<thead>
<tr>
<th>SMS text message content:</th>
</tr>
</thead>
<tbody>
<tr>
<td>wwwww _PSW:ssss**</td>
</tr>
<tr>
<td>Value: wwwww - 4-digit default SMS password; ssss - 4-digit new SMS password; range - [0001... 9999].**</td>
</tr>
<tr>
<td>Example: 0000 _PSW:1111</td>
</tr>
</tbody>
</table>

NOTE: The device rejects the SMS text messages containing wrong SMS password even from a listed user phone number.

12. USER PHONE NUMBERS

The device supports up to 3 user phone numbers identified as User 1 through 3. When the phone number is set, the user will be able to perform minor configuration and control the outputs by SMS text messages as well as by free of charge phone call (see **14. OUTPUTS**), receive the input alarm/restore and PSTN loss/restore SMS text messages from the device (see **13. INPUTS**).

By default, the device ignores any incoming calls and SMS text messages from a non-listed phone number as well as it rejects the SMS text messages containing wrong SMS password even from a listed user phone number.

The supported phone number format is the following:

- **International (with plus)** – The phone numbers must be entered starting with plus and an international country code in the following format: +[international code][area code][local number], example for UK: +441709111111.
- **International (with 00)** – The phone numbers must be entered starting with 00 and an international country code in the following format: 00[international code][area code][local number], example for UK: 00441709111111.
- **Local** – The phone numbers must be entered starting with an area code in the following format: [area code][local number], example for UK: 01709111111.

Set user phone number

<table>
<thead>
<tr>
<th>SMS text message content:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssss _NRu:ttteeellnnuumm**</td>
</tr>
<tr>
<td>Value: ssss - 4-digit SMS password; u - user phone number slot, range - [1... 3]; tttteellnnuumm - up to 15 digits user phone number.**</td>
</tr>
<tr>
<td>Example: 1111 _NR1:+441709111111</td>
</tr>
</tbody>
</table>

NOTE: This operation may be carried out from the PC using the ELDES Configuration Tool software.
13. INPUTS

The system comes equipped with 3 inputs identified as Z1, Z2 and Z3. The inputs are designed for different detection device connection, such as motion detectors, door contacts and other passive or active digital level sensors. Once the detection device is triggered, the communicator can notify up to 3 listed user phone numbers by SMS text message (see 12. USER PHONE NUMBERS) as well as the monitoring station via the pre-configured communication method. The inputs can also be used for PGM output connection of non-GSM alarm panel.

When ET082 communicator is linked up with the alarm panel using keybus interface communication wiring method (see 6.2. Keybus Interface), Z1 and Z2 terminals convert to keybus interface and can no longer be used as digital inputs. In such case only Z3 terminal can still be used as a digital input.

By default, the inputs are disabled. To enable/disable a certain input, please refer to the following configuration methods.

Enable input

SMS

SMS text message content:

\texttt{ssss _Zn:ON}

Value:

\texttt{ssss} - 4-digit SMS password; \texttt{n} - input number, range - \([1... 3]\).

Example:

\texttt{1111_Z2:ON}

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

Disable input

SMS

SMS text message content:

\texttt{ssss _Zn:OFF}

Value:

\texttt{ssss} - 4-digit SMS password; \texttt{n} - input number, range - \([1... 3]\).

Example:

\texttt{1111_Z1:OFF}

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

By default, the inputs are set as NO (normally-open). To set the input as NC (normally-closed) or NO (normally-open), please refer to the following configuration method.

Set input as NC or NO

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

By default, input alarm and restore notifications delivered by SMS text message are **Input 1... 3 TRIGGERED** and **Input 1... 3 RESTORED** respectively. To manage input alarm and restore texts, please refer to the following configuration methods.

Set input alarm text

SMS

SMS text message content:

\texttt{ssss _Zn:ON:in-alarm-text}

Value:

\texttt{ssss} - 4-digit SMS password; \texttt{n} - input number, range - \([1... 3]\); \texttt{in-alarm-text} - up to 23 characters input alarm text.

Example:

\texttt{1111_Z3:ON:Input3 violated}

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

Set input restore text

SMS

SMS text message content:

\texttt{ssss _Zn:OFF:in-restore-text}

Value:

\texttt{ssss} - 4-digit SMS password; \texttt{n} - input number, range - \([1... 3]\); \texttt{in-restore-text} - up to 23 characters input restore text.

Example:

\texttt{1111_Z1:OFF:Input1 restored}

Config Tool

This operation may be carried out from the PC using the ELDES Configuration Tool software.

ATTENTION: Colon, dash, comma characters are NOT allowed in the input alarm/restore notification texts.
Input alarm and restore data reports require to set up the Account number that is included in the data report. This Account number is also included in the periodic test data report.

To manage input alarm and restore data reports and set the Account number, please refer to the following configuration method.

Manage input data reports

This operation may be carried out from the PC using the *ELDES Configuration Tool* software.

Set Account for input alarm/restore data reports

This operation may be carried out from the PC using the *ELDES Configuration Tool* software.

To view current input state (violated/restored), please refer to the following configuration method.

View input states

SMS text message content:

Value: ssss - 4-digit SMS password.

Example: 1111_STATUS

This operation may be carried out from the PC using the *ELDES Configuration Tool* software.
14. OUTPUTS

The system comes equipped with 3 open collector outputs identifies as C1 through C3 designed for electrical appliance connection. Normally, the outputs can be used to arm/disarm a non-GSM alarm panel that has a zone configured as key-switch. The output can also be used to open/close garage doors, activate lights, heating, watering and much more. When output turns ON, the device triggers any equipment or relay connected to it.

For more details on how to wire the output, please refer to 2.3. Wiring Diagrams.

14.1. Output Names

Each output has a name that can be customized by the user. Typically, the name specifies a device type connected to the output, for example: Lights.

By default, the output names are OUTPUT1...3. To rename a certain output, please refer to the following configuration methods.

Rename output

- **SMS**
 - **SMS text message content:**

 ssss_TC:o:out-name

 - **Value:**

 ssss - 4-digit SMS password; o - output number, range - [1...3]; out-name - up to 23 characters output name.

 - **Example:** 1111_TC1:Pump

View output names

- **SMS**
 - **SMS text message content:**

 ssss_STATUS

 - **Value:**

 ssss - 4-digit SMS password.

 - **Example:** 1111_STATUS

ATTENTION: Colon, dash, comma characters are NOT allowed in the output names.

14.2. Output Control by SMS Text Message

By default, all outputs are turned OFF. To instantly turn ON/OFF an individual output, please refer to the following configuration methods.

Turn ON output

- **SMS**
 - **SMS text message content:**

 ssss_C:o:ON or ssss_out-name:ON

 - **Value:**

 ssss - 4-digit SMS password; o - output number, range - [1...3]; out-name - up to 23 characters output name.

 - **Example:** 1111_C2:ON

Turn OFF output

- **SMS**
 - **SMS text message content:**

 ssss_C:o:OFF or ssss_out-name:OFF

 - **Value:**

 ssss - 4-digit SMS password; o - output number, range - [1...3]; out-name - up to 23 characters output name.

 - **Example:** 1111_Pump:OFF

To instantly turn ON an individual output for a determined time period and automatically turn it OFF when the time period expires, please refer to the following configuration method.
Output Control by Event

The device comes equipped with output control by event feature allowing to assign a certain output to operate based on a specific event occurrence in the device.

Output Actions

The action of the determined output can be set as follows:

- **Turn ON** - Turns ON the output and keeps it in this state regardless of the associated event recurrence.
- **Turn OFF** - Turns OFF the output and keeps it in this state regardless of the associated event recurrence.
- **Turns ON (Pulse)** - Turns ON the output for a determined time period and automatically turn it OFF when the time period expires (pulse) regardless of the associated event recurrence.
- **Turns OFF (Pulse)** - Turns OFF the output for a determined time period and automatically turn it ON when the time period expires (pulse) regardless of the associated event recurrence.
- **Toggle** - Turns ON the output and keeps it in this state until the associated event reoccurs.

Device Events

The aforementioned output actions can be associated with the following events that have occurred in the device:

- **Tel. Line Lost** - The output action will be carried out in case the PSTN line connectivity is lost. For more details on PSTN line supervision, please refer to **15. PSTN CONNECTION STATE SUPERVISION**.
- **Tel. Line Restored** - The output action will be carried out in case the PSTN line connectivity is restored. For more details on PSTN line supervision, please refer to **15. PSTN CONNECTION STATE SUPERVISION**.
- **GSM Lost** - The output action will be carried out in case the GSM connection is lost. For more details on GSM connection supervision, please refer to **16. GSM CONNECTION STATE SUPERVISION**.
- **GSM Restored** - The output action will be carried out in case the GSM connection is restored. For more details on GSM connection supervision, please refer to **16. GSM CONNECTION STATE SUPERVISION**.

- **User 1... 3 Calls** - The output (s) can be controlled by dialling the device’s phone number from the specified listed user phone number (see **12. USER PHONE NUMBERS** for phone number management). The phone call is free charge as the system rejects it and carries out the associated output action. If there is more than one listed caller dialing to the system at the same time, the system will accept the incoming call from the caller who was the first to dial while other caller (s) will be ignored.

- **Input Violated** - The output action will be carried out in case a specified device’s input is violated. For more details on input management, please refer to **13. INPUTS**.

- **Input Restored** - The output action will be carried out in case the GSM connection is restored. The output action will be carried out in case a specified device’s input is restored. For more details on input management, please refer to **13. INPUTS**.

- **Ethernet Data Link Lost** - The output action will be carried out in case the Ethernet connection is lost. For more details on Ethernet connection supervision, please refer to **17. PERIODIC DATA LINK STATE SUPERVISION**.

- **Ethernet Data Link Restored** - The output action will be carried out in case the Ethernet connection is restored. For more details on Ethernet connection supervision, please refer to **17. PERIODIC DATA LINK STATE SUPERVISION**.

- **GPRS Data Link Lost** - The output action will be carried out in case the GPRS connection is lost. For more details on GPRS network connection supervision, please refer to **17. PERIODIC DATA LINK STATE SUPERVISION**.

- **GPRS Data Link Restored** - The output action will be carried out in case the GPRS connection is restored. For more details on GPRS network connection supervision, please refer to **17. PERIODIC DATA LINK STATE SUPERVISION**.

Manage output control by event

Config Tool

This operation may be carried out from the PC using the **ELDES Configuration Tool** software.
15. PSTN CONNECTION STATE SUPERVISION

ATTENTION: Notifications to the user phone number by SMS text message and data reports to the monitoring station regarding PSTN line loss/restore events can be used in both - Basic and Advanced communication modes, while the data report to the monitoring station regarding this event can be used in Advanced mode only (see 7.2. Advanced Mode).

NOTE: This section applies to With PSTN Line Supervision and With External PSTN Line Supervision communication wiring methods only (see 6.1. RING/TIP Interface).

The device comes equipped with PSTN line supervision and supports the following PSTN loss detection methods operating simultaneously:

- **PSTN fault detection:**
 - When the voltage drops below 4V in case the PSTN line cable being cut off or disconnected.
 - When the voltage on the PSTN line is ranging within the MIN (by default - 35V) and MAX (by default - 45V) voltage thresholds and remains for a specified time duration (by default - 5 seconds).

- **Smart PSTN loss detection** - When the alarm panel, which is linked up to the communicator, dials the 1st set up monitoring station phone number, but due to PSTN loss it fails to do so, it would attempt to contact the monitoring station by the 2nd monitoring station phone number set up on the alarm panel. In such case even if a dial tone is still present on the PSTN line, the communicator will detect the PSTN line connection failure as soon as the alarm panel attempts to dial the 2nd phone number starting with a dash character (#). In order to use this feature, user must open ELDES Configuration Tool software’s Voice Calls Settings section; from there on, in Smart PSTN detection Settings window, select Check for # symbols option. This method requires Smart PSTN module on-board.

Any of the aforementioned PSTN loss detection methods would result in communication link take-over by the communicator and data transmission via the pre-configured communication method until the PSTN connectivity is restored.

By default, when the PSTN is lost or restored for a longer time period than the set delay value (by default – 20 seconds), the communicator will turn the specified output ON and OFF (by default – output C1) respectively followed by, if enabled, notification to the listed user phone number (see 12. USER PHONE NUMBERS) by SMS text message and/or the monitoring station by data report via the pre-configured primary connection regarding PSTN loss/restore event.

If enabled, the default PSTN loss/restore notifications delivered by SMS text message are Tel. Line LOST and Tel. Line RESTORE respectively. Additionally, the data report can be delivered to the monitoring station under the event code 351 (by default). To manage PSTN loss/restore notifications and PSTN loss/restore delay value, please refer to the following configuration methods.

Manage PSTN loss/restore notifications

This operation may be carried out from the PC using the ELDES Configuration Tool software.

Set PSTN loss/restore delay

SMS text message content:

\[
\text{SSSS}_\text{TELDLY:del}
\]

Value: ssss - 4-digit SMS password; del - PSTN loss/restore delay; range - [0...250] seconds.

Example: 1111_TELDLY:45

This operation may be carried out from the PC using the ELDES Configuration Tool software.

For more details on automatic output control regarding the PSTN connection loss/restore, please refer to 14.3. Output Control by Event.

ATTENTION: To use the Smart PSTN loss detection method, Smart PSTN module must be implemented on request in advance.
16. GSM CONNECTION STATE SUPERVISION

The device supervises the GSM connection every 10 minutes. When the GSM signal is lost, the indicator GSM will light OFF and the device will turn ON a determined output (by default - output C2) if the GSM signal is lost for a longer time period than the set delay value (by default - 10 seconds). By default, once the GSM signal restores, the device will notify the listed user phone number (see 12. USER PHONE NUMBERS) by SMS text message and the determined output will turn OFF.

When using the Advanced communication mode, in case of GSM connection loss the communicator would switch to the pre-configured backup communication method (if any) and continue to transmit data until the GSM connection is restored.

By default, the notifications by SMS text message regarding the output restore is enabled. To disable/enable this notification and set a different delay value, please refer to the following configuration method.

<table>
<thead>
<tr>
<th>Disable/enable output restore notification</th>
<th>Config Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>This operation may be carried out from the PC using the ELDES Configuration Tool software.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set output control delay value</th>
<th>Config Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>This operation may be carried out from the PC using the ELDES Configuration Tool software.</td>
<td></td>
</tr>
</tbody>
</table>

For more details on automatic output control regarding the GSM connection loss/restore, please refer to 14.3. Output Control by Event.

17. PERIODIC DATA LINK STATE SUPERVISION

NOTE: This section is relevant to the users of IP communication method of Advanced mode only.

The device comes equipped with data link state supervision feature based on the connection type (GPRS network/Ethernet) specified in the IP communication method of Advanced mode settings. Once enabled, device will periodically verify the connectivity by ping signal transmission to the specified test server address and port (by default - eldes.lt:80) every 15 minutes (by default). In case the device has failed to deliver the ping signal to the test server address, the device will treat this event as data link loss and it will attempt to re-establish the connection by transmitting the ping signal every 1 minute. The data link will be treated as restored after 3 successful ping signal deliveries to the test server address.

In the event of GPRS connection loss/restore or Ethernet connection loss/restore, the data report will be delivered to the monitoring station under the event codes 359 or 360 (by default) respectively. Additionally, the default data link loss/restore notifications that can be delivered to up to 5 specified listed users (for user phone number management, please refer to Messaging Settings section of ELDES Configuration Tool software) by SMS text message are the following: GPRS data link lost, GPRS data link restored, Ethernet data link lost and Ethernet data link restored.

In addition, the device supports data link test periodically reported to the specified listed user phone number by SMS text message every 1 hour (by default). This report contains a custom text (by default - Data link test report:) along with GPRS network and Ethernet connection states (OK; lost; restored; N/A).

When the data link is lost or restored, the communicator may turn the specified output ON and OFF. For more details, please refer to 14.3. Output Control by Event.

To enable periodic data link supervision and manage data link loss/restore notifications, please refer to the following configuration method.

<table>
<thead>
<tr>
<th>Manage periodic data link state supervision settings</th>
<th>Config Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>This operation may be carried out from the PC using the ELDES Configuration Tool software.</td>
<td></td>
</tr>
</tbody>
</table>
18. DATE AND TIME
The device comes equipped with internal real-time clock (RTC) that keeps track of the current date and time. Once the device is up and running, the user must set the correct date and time, otherwise he will not be able to use periodic test (19. PERIODIC TEST) and automatic restart (20. AUTOMATIC RESTART) features. By default, after shutting down and starting up the device, the date and time must be set again.

Set date and time

NOTE: When the device is connected to the monitoring station via GPRS network or Ethernet connection, the date and time will be automatically synchronized with the monitoring station upon the device startup.

19. PERIODIC TEST
The device comes equipped with periodic test data report transmitted under the event code 602 to the monitoring station via the pre-configured communication method. The minimum period is every 1 hour. Typically, this feature is used to verify the power supply and online status of the device when used without an alarm panel.

Periodic test data report requires to set up the Account number that is included in the data report. This Account number is also included in input alarm/restore data report.

By default, the periodic test is disabled and Account number is not set. To enable/disable periodic test, set a transmission period and Account number, please refer to the following configuration method.

20. AUTOMATIC RESTART
In some critical situations, a periodic device restart may be required. The device may carry out the restart automatically. The minimum period is every 1 hour.

By default, the automatic restart is disabled. To enable/disable it and set a restart period, please refer to the following configuration method.

21. EVENTS LOG
The device supports the event log feature allowing to monitor the activity and communication status between the device and the monitoring station. To view, export and clear the event log, please refer to the following configuration method:
22. TECHNICAL SUPPORT

22.1. Troubleshooting

<table>
<thead>
<tr>
<th>Indication</th>
<th>Possible Reason</th>
</tr>
</thead>
</table>
| Indicator GSM is OFF or not flashing | - No external power supply
- Circuit not properly connected
- Blown fuse
- No GSM network signal |

<table>
<thead>
<tr>
<th>Indicator STATUS is flashing several times per second</th>
<th></th>
</tr>
</thead>
</table>
| System does not send any SMS text messages | - SIM card not inserted / improperly inserted
- PIN code enabled
- SIM card inactive
| Received SMS text message “Wrong syntax” or “Command is not correct” | - Incorrect syntax
- Extra <space> character is left in SMS message |

For product warranty repair service, please contact your local retail store where this product was purchased.

If your problem could not be fixed by the self-guide above, please contact your local distributor. More up to date information about your device and other products can be found at the manufacturer's website www.eldes.lt

22.2. Restoring Default Parameters

1. Unplug the USB cable.
2. Power down the device.
3. Short-circuit (connect) the DEF pins.
4. Power up the device for 7 seconds.
5. Power down the device.
6. Remove the short-circuit from DEF pins.
7. Parameters restored to default.

Alternatively, please refer to the following configuration method.

This operation may be carried out from the PC using the ELDES Configuration Tool software.

22.3. Updating the Firmware via USB Cable

1. Power down the device.
2. Short-circuit (connect) the DEF pins.
3. Connect the device via USB cable to the PC.
4. Power up the device.
5. The new window must pop-up where you will find the .bin file. Otherwise open My Computer and look for Boot Disk drive.
6. Delete the .bin file found in the drive.
7. Copy the new firmware .bin file to the very same window.
8. Power down the device.
9. Unplug the USB cable.
10. Remove the short-circuit from DEF pins.
11. Power up the device.
12. Firmware updated.

NOTE: It is strongly recommended to restore default parameters after the firmware update.
23. RELATED PRODUCTS

- Plastic enclosure
- Power supply
- Magnet mount straight GSM antenna.
- Adhesive flat GSM antenna
- Smart PSTN module
- ESR100 - digital receiver